NEED TO FIND	GIVEN	FORMULA
DEGREES CENTIGRADE	Degrees Fahrenheit	C = .56 (F-32)
Degrees Fahrenheit	Degrees Centigrade	F = 1.8 X C+ 32
Overhung Load	HP, RPM, Pitch DIA (IN), OHL Factor (F)	OHL =
Overhung Load	HP, RPM, Pitch Radius (IN), OHL Factor (F)	OHL= <u>Shaft Torque inches</u> xF <u>Pitch Radius (IN)</u>

OVERHUNG LOAD (OHL) FACTORS (F)					
Chain	Gear	V-Belt	Flat-Belt		
1.00	1.25	1.50	2.50		

CONVERSION FACTORS - ENGLISH TO METRIC

WEIGHT

Imperial Tons (t) x 0.91 = Metric Tonnes (T) Pounds x 0.45 = Kilograms (KG)

Length

INCHES X 25.40 = MILLIMETERS (MM) INCHES X .0254 = METERS (M)

Power

 HORSEPOWER X 746
 = WATTS (W)

 HORSEPOWER X .75
 = KILOWATTS (KW)

 POUND-FORCE X 4.4448
 = NEWTONS (N)

 POUND-FEET X 1.356
 = NEWTON METERS (NM)

RULES OF THUMB – APPROXIMATION

- AT 1800 RPM A MOTOR DEVELOPS 3 FT. LB. TORQUE PER HP. 7
- At 230 volts a 3 phase motor draws 2.5 amps per HP.
- AT 230 VOLTS A 1 PHASE MOTOR DRAWS 5 AMPS PER HP.
- CONSTANT TORQUE IS WHERE REQUIRED HORSEPOWER VARIES DIRECTLY WITH SPEED.

- (1 HP = 746 WATTS)

NEED TO FIND	GIVEN	FORMULA
Ratio	High & Low RPM	RATIO =
FPM	DIA (inches) & RPM	FPM = .262 X DIA X RPM
RPM	FPM & DIA (inches)	RPM=
DIAMETER (INCHES)	FPM & RPM	DIA= FPM .262 x RPM
Belt Length	Sheave Diameters & Center Distance	(D + d) 1.57 + 2CD
Horsepower	Torque FT. LB. & RPM	$HP = \frac{T \times RPM}{5250}$
TORQUE FT. LB.	Horsepower & RPM	T=
Torque In. LB.	Horsepower & RPM	$T = \frac{HP \times 63,025}{RPM}$
Horsepower	Torque In. LB. & RPM	HP=
Horsepower	Force (LBS) & FPM	HP= <u>F x FPM</u> 33,000
Outside Diameter (OD)	Pitch DIA & Addendum (ADD)	OD=PD+2(ADD)
Circumference of a Circle	Diameter	C=3.1416 x D
PITCH DIAMETER	Number of Teeth (N) & Diametrical Pitch (DP)	PD=
PD	Outside Diameter (OD) & Diametrical Pitch (DP)	$PD=OD-\frac{2}{D^{p}}$
CIRCULAR PITCH	DIAMETRICAL PITCH (DP)	CP=
DIAMETRICAL PITCH	Number of Teeth (N) & Pitch Diameter	$DP = \frac{N}{PD}$

More Questions? Register for Gear School!

WWW.HORSBURGH-SCOTT.COM/PRODUCTS-AND-SERVICES/GEAR-SCHOOL.PHP

